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Abstract. Experimental evidence suggests that, for materials exhibiting no ap-
preciable work hardening and containing no more than approximately 20% volume
fraction of pores, the macroscopic strain at which yield occurs is nearly constant,
with a tendency to increase slightly as porosity increases. The present work shows
that both observations - approximate constancy of strain at yield and its tendency to
increase with porosity - have a relatively simple micromechanical explanation.

1. Introduction. Two primary thrusts in the plasticity of porous solids have
been in (1) small overall strains, allowing for the possibility of large microscale de-
formations, with the goal being to express a macroscopic yield surface in stress space
in terms of porosity, for cases when such a surface can be clearly identified and (2)
the issue of void growth and coalescence at much larger overall strains. Problem (2)
has been intensely investigated in recent years. A large number of these analyses
stem from the well-known analysis of Gurson (1977). A particularly lucid analysis of
Gurson’s model, and its early extensions, can be found in Mear (1990), while more
recent elucidations of the model can be found in Pardoen and Hutchinson (2000).

The present paper focuses on Problem (1), and utilizes the following earlier find-
ings. Experimental evidence (Wang et al. 1996, ; Da Silva and Ramesh 1997a, 1997b;
Kee et al. 1998) suggests that, for materials with no appreciable work hardening in
bulk (at zero porosity) and containing no more than approximately 20 % volume frac-
tion of pores, the macroscopic strain at which yield occurs is relatively insensitive to
the pore volume fraction; more precisely, the yield strain has the tendency to increase
slightly as porosity increases (Figure 1). This clearly identifiable yield point separates
the stage of a more or less linear stress-strain relation from an almost perfectly plastic
flow.

Based on these observations, a micromechanical model was recently suggested
for such materials by Sevostianov and Kachanov (2001). It explains linearity of the
stress-strain relation, that holds almost up to the yield point, by hypothesizing that
“pockets” of local plasticity forming near pore boundaries remain contained and well
embedded within the predominantly elastic field (somewhat similar to the concept
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Figure 1: Idealized stress-strain curve.

of small plastic zones near crack tips). This hypothesis was confirmed by earlier
microscale simulations of Zohdi et al. (2002). These local plastic ”pockets” blunt
the stress concentrations to such an extent that further loading produces only a very
limited growth of their size. As loading increases, a transition occurs in a relatively
narrow interval of stresses, that can be idealized as the yield stress, to an almost
fully plasticized matrix, with nearly uniform field of the stress deviator. By using
the constancy of strain at yield, the mentioned work derives the yield condition in
stresses in terms of the porous space geometry. This scenario differs from the highly
non-uniform deviator field for a hardening material. This difference seems natural,
since stress “blunting” in a strain hardening material is substantially less pronounced,
and stress concentrations at pore boundaries may lead to localizations, as the applied
loads increase.

In the present work, we provide a relatively simple micromechanical explanation
can be given not only for approximate constancy of the yield strain, but also for the
second order effect - a slight increase of the yield strain as porosity increases, which
is in agreement with cited experimental data and previous numerical simulations.

2. Dependency of yield strain on pore volume fraction. Since the yield
point in poroplastic materials is somewhat ”blurred”, we define it as the point of
intersection of the line of the horizontal ”plateau” and the elastic straight line so
that for pure shear loading (at infinitesimal strains), for example, ¢, def Ty /241, where
Ty is the shear stress at yield and p is the elastic shear modulus (Figure [1]). The
approximate constancy of strain at yield, with a slight tendency to increase with
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porosity, means that €, det 7, /21" ~ 62 def T,S /2u° or, more precisely, €y > 62, where
index 70" and * refer to the quantities for the bulk materials (zero porosity) and the

considered porous material, respectively. This implies that
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or, more precisely, p*/po < 7,/7;. We now show that both observed tendencies-
approximate constancy of € and its tendency to slightly increase with porosity-are
consistent with relatively simple micromechanical considerations.

To estimate 7,/ 7'5 , we assume a fully, or almost fully, plasticized state at yield.
This assumption is also consistent with studies of plastic percolation in GASAR ma-
terials (Kee et al. 1998) where percolation occurred when over 80 % of the material
was plasticized, and the microscale simulations of Zohdi et al. (2002). We emphasize
that the hypothesis applies only to materials that experience negligible hardening in
bulk (at zero porosity). Consequently, by volumetrically averaging over the volume
one obtains

7, = (1= vp)7y, (2)
where v, is the volume fraction of pores (porosity).

The observed tendencies for the yield strain e imply that u*/uo ~ 1w, or, more
precisely, u*/p’ < 1 — vp. Estimation of p* /1o belongs to the problem of effective
elastic properties of a material with pores. In the case when the pores are spherical
(results remain sufficiently accurate for moderately non-spherical randomly oriented
pores, Kachanov et al., 1994), in the small porosity limit,

Ho 7—"51

* 15(1 —
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where 1y is the Poisson’s ratio of the bulk material. In this limit, therefore, the
observed tendencies require that the ratio
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is close to unity, with a slight tendency to increase with v,. Indeed, as v, increases
from 0 to 0.1, this ratio changes from 1 to about 1.1. At porosities of the order of 0.2,
result (3) loses accuracy, and we use the upper Hashin-Shtrikman bound (the lower
one is zero for pores); see Hashin and Shtrikman (1962, 1963) for further analysis.
For microstructures comprised of a continuous hard matrix surrounding soft particles,
it is well-known that the Hashin-Shtrikman upper bound is quite accurate, while for
microstructures comprised of a continuous soft matrix surrounding hard particles, the
Hashin-Shtrikman lower bound is appropriate (Hashin 1983). It is valid for all pore
shapes and has the form



L34

* J—
W 1% (5)
po — 14+vp
where
8 — 101/()

YT

The mentioned tendencies now require that the ratio

=, = 1+ vy, (7)
1+~yvp

is close to unity, with a slight tendency to increase with v,. Indeed, it changes from
about 1.1 to 1.2 (for a typical value of approximately vy = 0.3), as v, increases from
0.1 to 0.2. Estimate (7) is relatively insensitive to the value of Poisson’s ratio of the
bulk material vy. It predicts that, for materials with lower v, the slight increase in
the yield strain may be more pronounced. Speifically, the parameter v varies in the
range of 2/3 < v < 3/2, where the lower bound corresponds to vy = 0.5 and the
upper bound corresponds to vy = —1.

3. Concluding remarks. A relatively straightforward micromechanical expla-
nation is given for the observation that the macroscopic strain at which yield occurs
is approximately constant; more precisely, it has a slight tendency to grow as porosity
increases. Furthermore, an earlier direct numerical analysis, conducted by the authors
(Zohdi et al., 2002), confirms both the approximate constancy of the yield strain and
its slight shift to the right We emphasize that these results are obtained under the
assumption that the dense material (zero porosity) is elastic-perfectly plastic, i.e. it
experiences no noticeable hardening. This is consistent with experimental evidence
(Wang et al. 1996; Da Silva and Ramesh 1997a, 1997b; Kee et al. 1998) which
suggests that, for materials exhibiting no appreciable work hardening and containing
no more than about 20% volume fraction of pores, the macroscopic strain at which
yield occurs is approximately constant, with a slight tendency to increase with pore
volume fraction. The underlying concept - that the material is almost fully plasticized
at yield - is further confirmed by our earlier direct microscale simulations (Zohdi et
al., 2002) and studies of plastic percolation in GASAR materials, Kee et al. (1998).
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